
Learning gem5 – Part I
Getting started with gem5

Jason Lowe-Power
http://learning.gem5.org/

https://faculty.engineering.ucdavis.edu/lowepower/

© Jason Lowe-Power <jason@lowepower.com> 1

http://learning.gem5.org/
https://faculty.engineering.ucdavis.edu/lowepower/

What is gem5?

Michigan m5 + Wisconsin GEMS = gem5

“The gem5 simulator is a modular platform for computer-
system architecture research, encompassing system-level

architecture as well as processor microarchitecture.”

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,
Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2
(August 2011), 1-7. DOI=http://dx.doi.org/10.1145/2024716.2024718

© Jason Lowe-Power <jason@lowepower.com> 2

Tutorial and book are open source!

http://learning.gem5.org/

https://github.com/powerjg/learning_gem5

See a problem?
Open a pull request or issue

Want to add new material? Let me know!

Want to do your own version of this? See
http://learning.gem5.org/book/#notes-for-presentations

© Jason Lowe-Power <jason@lowepower.com> 3

Creative commons license
Attribution 4.0

http://learning.gem5.org/
https://github.com/powerjg/learning_gem5
http://learning.gem5.org/book/#notes-for-presentations

This tutorial

This is going to interactive

Work along with me for best results

Ask questions!!

© Jason Lowe-Power <jason@lowepower.com> 4

Schedule

Learning Part I 8:30 – 10:00

Break 10:00 – 10:30

Learning Part II 10:30 – 12:00

Lunch 12:00 – 1:30

Learning Part IV & III 1:30 – 3:30

Break 3:30 – 4:00

gem5 Best Practices 4:00 – 5:00

Open forum 5:00 – 5:30

© Jason Lowe-Power <jason@lowepower.com> 5

gem5 Best Practices:
• Contributing to gem5
• Ryota: Visualizing the O3 CPU
• Éder: gem5 for Memory Research

Learning Part I:
• Building gem5
• Config scripts
• gem5 output
• Simple SimObject

Learning Part IV:
• ISAs and CPU models
• Overview of gem5’s CPUs
• Building a simple CPU

Learning Part II:
• Event-driven simulation
• SimObject parameters
• Memory system objects
• Simple cache model

Learning Part III:
• Intro to Ruby
• Simple MSI protocol
• Configuring Ruby
• Debugging Ruby

Building gem5
http://learning.gem5.org/book/part1/building.html

© Jason Lowe-Power <jason@lowepower.com> 6

Switch!
> git clone https://gem5.googlesource.com/public/gem5

> cd gem5

> git checkout –b asplos

> scons build/X86/gem5.opt –j5

Let’s get started!

and now we wait (about 8 minutes)

© Jason Lowe-Power <jason@lowepower.com> 7

> scons build/X86/gem5.opt –j5

scons: the build system
that gem5 uses (like
make). See
http://scons.org/

build/X86/gem5.opt: “parameter”
passed to scons. gem5’s Sconscript
interprets this. Also, the patch to
the gem5 executable.

X86: Specifies the
default build options.
See build_opts/*

opt: version of executable
to compile (one of debug,
opt, perf, fast)

© Jason Lowe-Power <jason@lowepower.com> 8

http://scons.org/

gem5 architecture

gem5 consists of “SimObjects”

Most C++ objects in gem5 inherit
from class SimObject

Represent physical system
components

© Jason Lowe-Power <jason@lowepower.com> 9

gem5 architecture

gem5 is a discrete event simulator

1) Event at head dequeued

2) Event executed

3) More events queued

Event - 10

Event Queue

Event - 11

Event - 20

Event - 50

Event - 50

Event - 52

Event - 55

All SimObjects can enqueue
events to the event queue

© Jason Lowe-Power <jason@lowepower.com> 10

We’ll cover more
after the break

gem5 configuration scripts
http://learning.gem5.org/book/part1/simple_config.html

http://learning.gem5.org/book/part1/cache_config.html

© Jason Lowe-Power <jason@lowepower.com> 11

gem5 user interface

gem5 completely controlled by
Python scripts

Scripts define system to model

All (C++) SimObjects exposed to
Python

So… let’s make one!

© Jason Lowe-Power <jason@lowepower.com> 12

Simple config script

Single CPU connected to a
memory bus

Switch!

© Jason Lowe-Power <jason@lowepower.com> 13

Simple config script

configs/learning_gem5/part1/simple.py

© Jason Lowe-Power <jason@lowepower.com> 14

Running gem5

> build/X86/gem5.opt

configs/tutorial/simple.py

build/X86/gem5.opt:
the gem5 binary to run

configs/…/simple.py:
the configuration
script (config script)

© Jason Lowe-Power <jason@lowepower.com> 15

Port interface

| system.cpu.icache_port = system.membus.slave
| system.cpu.dcache_port = system.membus.slave
| ...
| system.mem_ctrl.port = system.membus.master

Ports connect MemObjects

Master Slave
Requests

Responses

To register a connection between
master and slave, use ‘=’ in Python

© Jason Lowe-Power <jason@lowepower.com> 16

Syscall Emulation (SE) mode

| process = Process()
| process.cmd = [‘tests/.../hello’]
| system.cpu.workload = process
| ...
| root = Root(full_system = False)

SE mode emulates the operating
system (Linux) syscalls. No OS runs.

process: an emulated process
with emulated page tables,
file descriptors, etc.

Full system mode runs a full OS as if gem5 is
a “bare metal” system. Like full virtualization.

© Jason Lowe-Power <jason@lowepower.com> 17

Extending SimObjects in Python config

Object-oriented config files

Adding command-line parameters

Going further: Adding caches
http://learning.gem5.org/book/part1/cache_config.html

© Jason Lowe-Power <jason@lowepower.com> 18

Switch!

http://learning.gem5.org/book/part1/cache_config.html

It’s just Python!

| class L1Cache(Cache):
| ...
|
| class L1ICache(L1Cache):
| def connectCPU(self, cpu):
| self.cpu_side = cpu.icache_port
| ...

Use good object-oriented
design!

Debugging config files is
easy. Just add some print
statements!

Use Python builtins to
provide support for
command line parameters.

See text for details

© Jason Lowe-Power <jason@lowepower.com> 19

Understanding gem5 output
http://learning.gem5.org/book/part1/gem5_stats.html

© Jason Lowe-Power <jason@lowepower.com> 20

Understanding gem5 output

> ls m5out

config.ini config.json stats.txt

config.ini: Dumps all of the
parameters of all SimObjects.
This shows exactly what you
simulated. config.json: Same as

config.ini, but in json
format.

stats.txt: Detailed statistic
output. Each SimObject
defines and updates statistics.
They are printed here at the
end of simulation.

© Jason Lowe-Power <jason@lowepower.com> 21

Switch!

stats.txt

© Jason Lowe-Power <jason@lowepower.com> 22

---------- Begin Simulation Statistics ----------
sim_seconds 0.000346 # Number of seconds simulated
sim_ticks 345518000 # Number of ticks simulated
final_tick 345518000 # Number of ticks from beginning ...
sim_freq 1000000000000 # Frequency of simulated ticks
...
sim_insts 5712 # Number of instructions simulated
sim_ops 10314 # Number of ops (including micro ...
...
system.mem_ctrl.bytes_read::cpu.inst 58264 # Number of bytes ...
system.mem_ctrl.bytes_read::cpu.data 7167 # Number of bytes ...
...
system.cpu.committedOps 10314 # Number of ops (...
system.cpu.num_int_alu_accesses 10205 # Number of integer ...

sim_seconds: name of stat. This
shows simulated guest time

Every SimObject can have its
own stats. Names are what you
used in the Python config file

Example scripts

© Jason Lowe-Power <jason@lowepower.com> 23

Switch!

Questions?

We covered

gem5 history

Downloading and building gem5

gem5’s user interface: python

How to write a configuration script

gem5’s output

Using the example scripts

© Jason Lowe-Power <jason@lowepower.com> 24

